Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign
نویسندگان
چکیده
The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese megacity (Shanghai) and was conducted during September 2009. This paper provides information on the measurements conducted for this study. In order to have some deep analysis of the measurements, a regional chemical/dynamical model (version 3 of Weather Research and Forecasting Chemical model – WRF-Chemv3) is applied for this study. The model results are intensively compared with the measurements to evaluate the model capability for calculating air pollutants in the Shanghai region, especially the chemical species related to ozone formation. The results show that the model is able to calculate the general distributions (the level and the variability) of air pollutants in the Shanghai region, and the differences between the model calculation and the measurement are mostly smaller than 30 %, except the calculations of HONO (nitrous acid) at PD (Pudong) and CO (carbon monoxide) at DT (Dongtan). The main scientific focus is the study of ozone chemical formation not only in the urban area, but also on a regional scale of the surrounding area of Shanghai. The results show that during the experiment period, the ozone photochemical formation was strongly under the VOC (volatile organic compound)-limited condition in the urban area of Shanghai. Moreover, the VOC-limited condition occurred not only in the city, but also in the larger regional area. There was a continuous enhancement of ozone concentratio s in the downwind of the megacity of Shanghai, resulting in a significant enhancement of ozone concentrations in a very large regional area in the surrounding region of Shanghai. The sensitivity study of the model suggests that there is a threshold value for switching from VOC-limited condition to NOx (nitric oxide and nitrogen dioxide)-limited c ndition. The threshold value is strongly dependent on the emission ratio of NOx / VOCs. When the ratio is about 0.4, the Shanghai region is under a strong VOC-limited condition over the regional scale. In contrast, when the ratio is reduced to about 0.1, the Shanghai region is under a strong NOx-limited condition. The estimated threshold value (on the regional scale) for switching from VOC-limited to NOx-limited condition ranges from 0.1 to 0.2. This result has important implications for ozone production in this region and will facilitate the development of effective O3 control strategies in the Shanghai region.
منابع مشابه
Megacity impacts on regional ozone formation
This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Abstract The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese Megacity (Shanghai) and was conducted during September 2009. This paper provides an overview of...
متن کاملSimulation of Mexico City plumes during the MIRAGE-Mex field campaign using the WRF-Chem model
The quantification of tropospheric O3 production in the downwind of the Mexico City plume is a major objective of the MIRAGE-Mex field campaign. We used a regional chemistry-transport model (WRF-Chem) to predict the distribution of O3 and its precursors in Mexico City and the surrounding region during March 2006, and compared the model with in-situ aircraft measurements of O3, CO, VOCs, NOx, an...
متن کاملAssessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study
A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been est...
متن کاملImpacts of Mixing Processes in Nocturnal Atmospheric Boundary Layer on Urban Ozone Concentrations
A number of open questions remain regarding the role of low-level jets (LLJs) and nocturnal mixing processes in the buildup of tropospheric ozone. The prevalence of southerly winds and LLJs in the U.S. Southern Great Plains during summer makes this region an ideal site for investigating the structure of the nocturnal boundary layer and its impacts on urban air quality. Ozone (O3) and nitrogen o...
متن کاملA Method for Forecasting Cloud Condensation Nuclei Using Predictions of Aerosol Physical and Chemical Properties from WRF/Chem
Model investigations of aerosol–cloud interactions across spatial scales are necessary to advance basic understanding of aerosol impacts on climate and the hydrological cycle. Yet these interactions are complex, involving numerous physical and chemical processes. Models capable of combining aerosol dynamics and chemistry with detailed cloud microphysics are recent developments. In this study, p...
متن کامل